Seshadri constants over fields of characteristic zero
نویسندگان
چکیده
Let X be a smooth projective variety defined over field k of characteristic 0 and let L nef line bundle k. We prove that if x∈X is k-rational point then the Seshadri constant ε(X,L,x) k‾ same as show, by constructing families examples, there are varieties whose global ε(X) zero. also result on existence curve with natural (and necessary) hypothesis.
منابع مشابه
Rédei polynomials over fields of characteristic zero
The possible role of Rédei polynomials over fields of characteristic zero in the quest for solutions to problems in the study of geometries and vector spaces over finite fields is discussed. This note is exploratory and does not attempt to solve any particular problem, although an example problem is considered.
متن کاملRemarks on Seshadri Constants
Given a smooth complex projective variety X and an ample line bundle L on X. Fix a point x ∈ X. We consider the question, are there conditions which guarantee the maxima of the Seshadri constant of L at x, i.e ε(L, x) = n √ L? We give a partial answer for surfaces and find examples where the answer to our question is negative. If (X,Θ) is a general principal polarized abelian surface, then ε(Θ,...
متن کاملDepth-3 Arithmetic Formulae over Fields of Characteristic Zero
In this paper we prove quadratic lower bounds for depth-3 arithmetic circuits over fields of characteristic zero. Such bounds are obtained for the elementary symmetric functions, the (trace of) iterated matrix multiplication, and the determinant. As corollaries we get the first nontrivial lower bounds for computing polynomials of constant degree, and a gap between the power of depth-3 arithmeti...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملBounds for Seshadri Constants
Introduction In this paper we present an alternative approach to the boundedness of Seshadri constants of nef and big line bundles at a general point of a complex–projective variety. Seshadri constants ε(L, x), which have been introduced by Demailly [De92], measure the local positivity of a nef line bundle L at a point x ∈ X of a complex–projective variety X, and can be defined as ε(L, x) := in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin Des Sciences Mathematiques
سال: 2023
ISSN: ['0007-4497', '1952-4773']
DOI: https://doi.org/10.1016/j.bulsci.2022.103209